Fundamentals of Embedded Software with the ARM Cortex-M3; Daniel W. Lewis; 2012

Fundamentals of Embedded Software with the ARM Cortex-M3 Upplaga 2

av Daniel W. Lewis
For sophomore-level courses in Assembly Language Programming in Computer Science, Embedded Systems Design, Real-Time Analysis, Computer Engineering, or Electrical Engineering curricula. Requires prior knowledge of C, C++, or Java. This text is useful for Computer Scientists, Computer Engineers, and Electrical Engineers involved with embedded software applications.

This book is intended to provide a highly motivating context in which to learn procedural programming languages. The ultimate goal of this text is to lay a foundation that supports the multi-threaded style of programming and high-reliability requirements of embedded software. It presents assembly the way it is most commonly used in practice - to implement small, fast, or special-purpose routines called from a main program written in a high-level language such as C. Students not only learn that assembly still has an important role to play, but their discovery of multi-threaded programming, preemptive and non-preemptive systems, shared resources, and scheduling helps sustain their interest, feeds their curiosity, and strengthens their preparation for subsequent courses on operating systems, real-time systems, networking, and microprocessor-based design.
For sophomore-level courses in Assembly Language Programming in Computer Science, Embedded Systems Design, Real-Time Analysis, Computer Engineering, or Electrical Engineering curricula. Requires prior knowledge of C, C++, or Java. This text is useful for Computer Scientists, Computer Engineers, and Electrical Engineers involved with embedded software applications.

This book is intended to provide a highly motivating context in which to learn procedural programming languages. The ultimate goal of this text is to lay a foundation that supports the multi-threaded style of programming and high-reliability requirements of embedded software. It presents assembly the way it is most commonly used in practice - to implement small, fast, or special-purpose routines called from a main program written in a high-level language such as C. Students not only learn that assembly still has an important role to play, but their discovery of multi-threaded programming, preemptive and non-preemptive systems, shared resources, and scheduling helps sustain their interest, feeds their curiosity, and strengthens their preparation for subsequent courses on operating systems, real-time systems, networking, and microprocessor-based design.
Upplaga: 2a upplagan
Utgiven: 2012
ISBN: 9780133357226
Förlag: Pearson
Format: Häftad
Språk: Engelska
Sidor: 256 st
For sophomore-level courses in Assembly Language Programming in Computer Science, Embedded Systems Design, Real-Time Analysis, Computer Engineering, or Electrical Engineering curricula. Requires prior knowledge of C, C++, or Java. This text is useful for Computer Scientists, Computer Engineers, and Electrical Engineers involved with embedded software applications.

This book is intended to provide a highly motivating context in which to learn procedural programming languages. The ultimate goal of this text is to lay a foundation that supports the multi-threaded style of programming and high-reliability requirements of embedded software. It presents assembly the way it is most commonly used in practice - to implement small, fast, or special-purpose routines called from a main program written in a high-level language such as C. Students not only learn that assembly still has an important role to play, but their discovery of multi-threaded programming, preemptive and non-preemptive systems, shared resources, and scheduling helps sustain their interest, feeds their curiosity, and strengthens their preparation for subsequent courses on operating systems, real-time systems, networking, and microprocessor-based design.
For sophomore-level courses in Assembly Language Programming in Computer Science, Embedded Systems Design, Real-Time Analysis, Computer Engineering, or Electrical Engineering curricula. Requires prior knowledge of C, C++, or Java. This text is useful for Computer Scientists, Computer Engineers, and Electrical Engineers involved with embedded software applications.

This book is intended to provide a highly motivating context in which to learn procedural programming languages. The ultimate goal of this text is to lay a foundation that supports the multi-threaded style of programming and high-reliability requirements of embedded software. It presents assembly the way it is most commonly used in practice - to implement small, fast, or special-purpose routines called from a main program written in a high-level language such as C. Students not only learn that assembly still has an important role to play, but their discovery of multi-threaded programming, preemptive and non-preemptive systems, shared resources, and scheduling helps sustain their interest, feeds their curiosity, and strengthens their preparation for subsequent courses on operating systems, real-time systems, networking, and microprocessor-based design.
Begagnad bok (0 st)
Begagnad bok (0 st)