Chapter zero : fundamental notions of abstract mathematics; Carol Schumacher; 2001
Chapter zero : fundamental notions of abstract mathematics; Carol Schumacher; 2001

Chapter zero : fundamental notions of abstract mathematicsUpplaga 2

av Carol Schumacher

  • Upplaga: 2a upplagan
  • Utgiven: 2001
  • ISBN: 9780201437249
  • Sidor: 256 st
  • Förlag: Boston, Mass. Addison-Wesley
  • Format: Häftad
  • Språk: Engelska

Om boken

0. Introduction-an Essay Mathematical Reasoning. Deciding What to Assume. What Is Needed to Do Mathematics? Chapter Zero 1. Logic. True or False. Thought Experiment: True or False. Statements and Predicates. Quantification. Mathematical Statements. Mathematical Implication. Direct Proofs. Compound Statements and Truth Tables. Learning from Truth Tables. Tautologies. What About the Converse? Equivalence and Rephrasing. Negating Statements. Existence Theorems. Uniqueness Theorems. Examples and Counter Examples. Direct Proof. Proof by Contrapositive. Proof by Contradiction. Proving Theorems: What Now? Problems. Questions to Ponder 2. Sets. Sets and Set Notation. Subsets. Set Operations. The Algebra of Sets. The Power Set. Russell's Paradox. Problems. Questions to Ponder. 3. Induction. Mathematical Induction. Using Induction. Complete Induction. Questions to Ponder. 4. Relations. Relations. Orderings. Equivalence Relations. Graphs. Coloring Maps. Problems. Questions to Ponder. 5. Functions. Basic Ideas. Composition and Inverses. Images and Inverse Images. Order Isomorphisms. Sequences. Sequences with Special Properties. Subsequences. Constructing Subsequences Recursively. Binary Operations. Problems. Questions to Ponder 6. Elementary Number Theory. Natural Numbers and Integers. Divisibility in the Integers. The Euclidean Algorithm. Relatively Prime Integers. Prime Factorization. Congruence Modulo n. Divisibility Modulo n. Problems. Questions to Ponder. 7. Cardinality. Galileo's Paradox. Infinite Sets. Countable Sets. Beyond Countability. Comparing Cardinalities. The Continuum Hypothesis. Problems. Questions to Ponder. 8. The Real Numbers. Constructing the Axioms. Arithmetic. Order. The Least Upper Bound Axiom. Sequence Convergence in R. Problems. Questions to Ponder. A. Axiomatic Set Theory. Elementary Axioms. The Axiom of Infinity. Axioms of Choice and Substitution. B. Constructing R. From N to Z. From Z to Q. From Q to R. Index.

Åtkomstkoder och digitalt tilläggsmaterial garanteras inte med begagnade böcker

Mer om Chapter zero : fundamental notions of abstract mathematics (2001)

2001 släpptes boken Chapter zero : fundamental notions of abstract mathematics skriven av Carol Schumacher. Det är den 2a upplagan av kursboken. Den är skriven på engelska och består av 256 sidor. Förlaget bakom boken är Boston, Mass. Addison-Wesley.

Köp boken Chapter zero : fundamental notions of abstract mathematics på Studentapan och spara pengar.

Referera till Chapter zero : fundamental notions of abstract mathematics (Upplaga 2)

Harvard

Schumacher, C. (2001). Chapter zero : fundamental notions of abstract mathematics. 2:a uppl. Boston, Mass. Addison-Wesley.

Oxford

Schumacher, Carol, Chapter zero : fundamental notions of abstract mathematics, 2 uppl. (Boston, Mass. Addison-Wesley, 2001).

APA

Schumacher, C. (2001). Chapter zero : fundamental notions of abstract mathematics (2:a uppl.). Boston, Mass. Addison-Wesley.

Vancouver

Schumacher C. Chapter zero : fundamental notions of abstract mathematics. 2:a uppl. Boston, Mass. Addison-Wesley; 2001.