Vector Calculus; Susan J Colley; 2005
1 säljare

Vector Calculus Upplaga 3

av Susan J Colley
This text uses the language and notation of vectors and matrices to clarify issues in multivariable calculus. Accessible to anyone with a good background in single-variable calculus, it presents more linear algebra than usually found in a multivariable calculus book. Colley balances this with very clear and expansive exposition, many figures, and numerous, wide-ranging exercises. Instructors will appreciate Colley's writing style, mathematical precision, level of rigor, and full selection of topics treated. Vectors: Vectors in Two and Three Dimensions. More About Vectors. The Dot Product. The Cross Product. Equations for Planes; Distance Problems. Some n-Dimensional Geometry. New Coordinate Systems. Differentiation in Several Variables: Functions of Several Variables; Graphing Surfaces. Limits. The Derivative. Properties; Higher-Order Partial Derivatives; Newton's Method. The Chain Rule. Directional Derivatives and the Gradient. Vector-Valued Functions: Parametrized Curves and Kepler's Laws. Arclength and Differential Geometry. Vector Fields: An Introduction. Gradient, Divergence, Curl, and the Del Operator. Maxima and Minima in Several Variables: Differentials and Taylor's Theorem. Extrema of Functions. Lagrange Multipliers. Some Applications of Extrema. Multiple Integration: Introduction: Areas and Volumes. Double Integrals. Changing the Order of Integration. Triple Integrals. Change of Variables. Applications of Integration. Line Integrals: Scalar and Vector Line Integrals. Green's Theorem. Conservative Vector Fields. Surface Integrals and Vector Analysis: Parametrized Surfaces. Surface Integrals. Stokes's and Gauss's Theorems. Further Vector Analysis; Maxwell's Equations. Vector Analysis in Higher Dimensions: An Introduction to Differential Forms. Manifolds and Integrals of k-forms. The Generalized Stokes's Theorem. For all readers interested in multivariable calculus.
This text uses the language and notation of vectors and matrices to clarify issues in multivariable calculus. Accessible to anyone with a good background in single-variable calculus, it presents more linear algebra than usually found in a multivariable calculus book. Colley balances this with very clear and expansive exposition, many figures, and numerous, wide-ranging exercises. Instructors will appreciate Colley's writing style, mathematical precision, level of rigor, and full selection of topics treated. Vectors: Vectors in Two and Three Dimensions. More About Vectors. The Dot Product. The Cross Product. Equations for Planes; Distance Problems. Some n-Dimensional Geometry. New Coordinate Systems. Differentiation in Several Variables: Functions of Several Variables; Graphing Surfaces. Limits. The Derivative. Properties; Higher-Order Partial Derivatives; Newton's Method. The Chain Rule. Directional Derivatives and the Gradient. Vector-Valued Functions: Parametrized Curves and Kepler's Laws. Arclength and Differential Geometry. Vector Fields: An Introduction. Gradient, Divergence, Curl, and the Del Operator. Maxima and Minima in Several Variables: Differentials and Taylor's Theorem. Extrema of Functions. Lagrange Multipliers. Some Applications of Extrema. Multiple Integration: Introduction: Areas and Volumes. Double Integrals. Changing the Order of Integration. Triple Integrals. Change of Variables. Applications of Integration. Line Integrals: Scalar and Vector Line Integrals. Green's Theorem. Conservative Vector Fields. Surface Integrals and Vector Analysis: Parametrized Surfaces. Surface Integrals. Stokes's and Gauss's Theorems. Further Vector Analysis; Maxwell's Equations. Vector Analysis in Higher Dimensions: An Introduction to Differential Forms. Manifolds and Integrals of k-forms. The Generalized Stokes's Theorem. For all readers interested in multivariable calculus.
Upplaga: 3e upplagan
Utgiven: 2005
ISBN: 9780131858749
Förlag: Pearson
Format: Inbunden
Språk: Engelska
Sidor: 576 st
This text uses the language and notation of vectors and matrices to clarify issues in multivariable calculus. Accessible to anyone with a good background in single-variable calculus, it presents more linear algebra than usually found in a multivariable calculus book. Colley balances this with very clear and expansive exposition, many figures, and numerous, wide-ranging exercises. Instructors will appreciate Colley's writing style, mathematical precision, level of rigor, and full selection of topics treated. Vectors: Vectors in Two and Three Dimensions. More About Vectors. The Dot Product. The Cross Product. Equations for Planes; Distance Problems. Some n-Dimensional Geometry. New Coordinate Systems. Differentiation in Several Variables: Functions of Several Variables; Graphing Surfaces. Limits. The Derivative. Properties; Higher-Order Partial Derivatives; Newton's Method. The Chain Rule. Directional Derivatives and the Gradient. Vector-Valued Functions: Parametrized Curves and Kepler's Laws. Arclength and Differential Geometry. Vector Fields: An Introduction. Gradient, Divergence, Curl, and the Del Operator. Maxima and Minima in Several Variables: Differentials and Taylor's Theorem. Extrema of Functions. Lagrange Multipliers. Some Applications of Extrema. Multiple Integration: Introduction: Areas and Volumes. Double Integrals. Changing the Order of Integration. Triple Integrals. Change of Variables. Applications of Integration. Line Integrals: Scalar and Vector Line Integrals. Green's Theorem. Conservative Vector Fields. Surface Integrals and Vector Analysis: Parametrized Surfaces. Surface Integrals. Stokes's and Gauss's Theorems. Further Vector Analysis; Maxwell's Equations. Vector Analysis in Higher Dimensions: An Introduction to Differential Forms. Manifolds and Integrals of k-forms. The Generalized Stokes's Theorem. For all readers interested in multivariable calculus.
This text uses the language and notation of vectors and matrices to clarify issues in multivariable calculus. Accessible to anyone with a good background in single-variable calculus, it presents more linear algebra than usually found in a multivariable calculus book. Colley balances this with very clear and expansive exposition, many figures, and numerous, wide-ranging exercises. Instructors will appreciate Colley's writing style, mathematical precision, level of rigor, and full selection of topics treated. Vectors: Vectors in Two and Three Dimensions. More About Vectors. The Dot Product. The Cross Product. Equations for Planes; Distance Problems. Some n-Dimensional Geometry. New Coordinate Systems. Differentiation in Several Variables: Functions of Several Variables; Graphing Surfaces. Limits. The Derivative. Properties; Higher-Order Partial Derivatives; Newton's Method. The Chain Rule. Directional Derivatives and the Gradient. Vector-Valued Functions: Parametrized Curves and Kepler's Laws. Arclength and Differential Geometry. Vector Fields: An Introduction. Gradient, Divergence, Curl, and the Del Operator. Maxima and Minima in Several Variables: Differentials and Taylor's Theorem. Extrema of Functions. Lagrange Multipliers. Some Applications of Extrema. Multiple Integration: Introduction: Areas and Volumes. Double Integrals. Changing the Order of Integration. Triple Integrals. Change of Variables. Applications of Integration. Line Integrals: Scalar and Vector Line Integrals. Green's Theorem. Conservative Vector Fields. Surface Integrals and Vector Analysis: Parametrized Surfaces. Surface Integrals. Stokes's and Gauss's Theorems. Further Vector Analysis; Maxwell's Equations. Vector Analysis in Higher Dimensions: An Introduction to Differential Forms. Manifolds and Integrals of k-forms. The Generalized Stokes's Theorem. For all readers interested in multivariable calculus.
Begagnad bok
499 kr
Fri frakt & skickas inom 1-3 vardagar
Köpskydd med Studentapan
Varje köp täcks av Studentapans köpskydd som säkerställer att boken kommer fram, att du får rätt bok och att skicket stämmer överens med beskrivning.
499 kr
Fri frakt & skickas inom 1-3 vardagar