Topology; James Munkres; 1999

Topology Upplaga 2

av James Munkres
I. GENERAL TOPOLOGY.

 1. Set Theory and Logic.
 2. Topological Spaces and Continuous Functions.
 3. Connectedness and Compactness.
 4. Countability and Separation Axioms.
 5. The Tychonoff Theorem.
 6. Metrization Theorems and Paracompactness.
 7. Complete Metric Spaces and Function Spaces.
 8. Baire Spaces and Dimension Theory.
II. ALGEBRAIC TOPOLOGY.

 9. The Fundamental Group.
10. Separation Theorems in the Plane.
11. The Seifert-van Kampen Theorem.
12. Classification of Surfaces.
13. Classification of Covering Spaces.
14. Applications to Group Theory.
Index.
I. GENERAL TOPOLOGY.

 1. Set Theory and Logic.
 2. Topological Spaces and Continuous Functions.
 3. Connectedness and Compactness.
 4. Countability and Separation Axioms.
 5. The Tychonoff Theorem.
 6. Metrization Theorems and Paracompactness.
 7. Complete Metric Spaces and Function Spaces.
 8. Baire Spaces and Dimension Theory.
II. ALGEBRAIC TOPOLOGY.

 9. The Fundamental Group.
10. Separation Theorems in the Plane.
11. The Seifert-van Kampen Theorem.
12. Classification of Surfaces.
13. Classification of Covering Spaces.
14. Applications to Group Theory.
Index.
Upplaga: 2a upplagan
Utgiven: 1999
ISBN: 9780131816299
Förlag: Pearson
Format: Inbunden
Språk: Engelska
Sidor: 537 st
I. GENERAL TOPOLOGY.

 1. Set Theory and Logic.
 2. Topological Spaces and Continuous Functions.
 3. Connectedness and Compactness.
 4. Countability and Separation Axioms.
 5. The Tychonoff Theorem.
 6. Metrization Theorems and Paracompactness.
 7. Complete Metric Spaces and Function Spaces.
 8. Baire Spaces and Dimension Theory.
II. ALGEBRAIC TOPOLOGY.

 9. The Fundamental Group.
10. Separation Theorems in the Plane.
11. The Seifert-van Kampen Theorem.
12. Classification of Surfaces.
13. Classification of Covering Spaces.
14. Applications to Group Theory.
Index.
I. GENERAL TOPOLOGY.

 1. Set Theory and Logic.
 2. Topological Spaces and Continuous Functions.
 3. Connectedness and Compactness.
 4. Countability and Separation Axioms.
 5. The Tychonoff Theorem.
 6. Metrization Theorems and Paracompactness.
 7. Complete Metric Spaces and Function Spaces.
 8. Baire Spaces and Dimension Theory.
II. ALGEBRAIC TOPOLOGY.

 9. The Fundamental Group.
10. Separation Theorems in the Plane.
11. The Seifert-van Kampen Theorem.
12. Classification of Surfaces.
13. Classification of Covering Spaces.
14. Applications to Group Theory.
Index.
Begagnad bok (0 st)
Begagnad bok (0 st)